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a b s t r a c t

Static output-feedback stabilization for the nth order vector differential equations by using artificial
multiple delays is considered. Under assumption of the stabilizability of the system by a static feedback
that depends on the output and its derivatives up to the order n − 1, a delayed static output-feedback
is found that stabilizes the system. The conditions for the stability analysis of the resulting closed-loop
system are given in terms of simple LMIs. It is shown that the LMIs are always feasible for appropriately
chosen gains and small enough delays. Robust stability analysis in the presence of uncertain time-varying
delays and stochastic perturbation of the system coefficients is provided. Numerical examples including
chains of three and four integrators that are stabilized by static output-feedbacks with multiple delays
illustrate the efficiency of the method.
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1. Introduction

It is well-known that some classes of systems (e.g. chains
of integrators or oscillators, inverted pendulums) that cannot
be stabilized by memoryless static output-feedbacks, can be
stabilized by using static output-feedbacks with delays (French,
Ilchmann, &Mueller, 2009; Karafyllis, 2008; Kharitonov, Niculescu,
Moreno, &Michiels, 2005;Michiels & Niculescu, 2014; Niculescu &
Michiels, 2004). The idea of feedback design in this case is usually
based on the employing of a stabilizing feedback that depends on
the output derivatives, and further approximation of the output
derivatives (e.g. by finite differences). In the existing works it is
proved that the resulting delayed static output-feedback stabilizes
the system for small enough delays. However, efficient and simple
conditions for the design and robustness analysis are missing.

The objective of the present paper is to fill this gap for systems
that are governed by nth order vector differential equation and
that can be stabilized by a static feedback that depends on the
output and its derivatives up to the order n − 1. Some first results
for n = 2 were obtained recently in Fridman and Shaikhet
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(2016), where simple LMIs for robust stability analysis of the
closed-loop delayed systemswere derived. Comparatively tomore
general LMIs for stability analysis of time-delay systems provided
e.g. in Gu, Kharitonov, and Chen (2003) and Seuret and Gouaisbaut
(2013) (that may also be applicable to delay-induced stability), the
conditions of Fridman and Shaikhet (2016) are essentially simpler
leading in numerical examples to slightly more conservative
results. Moreover, differently from Gu et al. (2003) and Seuret and
Gouaisbaut (2013), the feasibility of LMIs was justified in Fridman
and Shaikhet (2016) for small enough delays.

In the present paper, we suggest a new idea to represent the
delayed outputs in the form of Taylor expansion with the integral
(Lagrange) form of the remainder. This leads to novel controller
design and robust stability analysis via a novel simple Lyapunov
functional. For n = 2, the suggested Lyapunov functional is
different from the one of Fridman and Shaikhet (2016) and leads
to less restrictive conditions. However, as in Fridman and Shaikhet
(2016), this method employs a Lyapunov functional depending on
the state derivative that seems to benot applicable to the stochastic
case.

For the stochastic case, we develop the model transformation-
based analysis initiated in Borne, Kolmanovskii, and Shaikhet
(2000) and Shaikhet (2013) and applied in Fridman and Shaikhet
(2016). The feasibility of the resulting LMIs is justified for
appropriately chosen gains and small enough delays. Extension
to time-varying delays and stochastic perturbations is considered.
Numerical examples including chains of three and four integrators
illustrate the efficiency of the results.
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2. Problem formulation and preliminaries

Consider the nth order vector system

y(n)(t) =

n−1
i=0

Aiy(i)(t) + Bu(t), (2.1)

where y(t) = y(0)(t) ∈ Rk is the measurement, y(i)(t) is the
ith derivative of y(t), u(t) ∈ Rm is the control input, Ai ∈ Rk×k

and B ∈ Rk×m are constant matrices. Assume that the open-loop
system is unstable, and we are looking for a simple static output-
feedback that will stabilize the system. It may happen that (2.1) is
not stabilizable by u(t) = K0y(t), but may be stabilizable by using
artificial multiple delays (Karafyllis, 2008; Niculescu & Michiels,
2004).

Denote

x(t) = col{y(0)(t), . . . , y(n−1)(t)}

= col{x0(t), . . . , xn−1(t)},
B̄ = col{0, . . . , 0, B} ∈ Rnk×m,

A =


0 Ik 0 · · · 0
0 0 Ik · · · 0
. . . · · · · · · · · · · · ·

0 0 0 · · · Ik
A0 A1 A2 · · · An−1

 ∈ Rnk×nk.

(2.2)

Then (2.1) can be presented as

ẋ(t) = Ax(t) + B̄u(t). (2.3)

Assume that the pair (A, B̄) is stabilizable, i.e. there exists a matrix
K̄ = [K̄0 . . . K̄n−1] ∈ Rm×nk such that the matrix D = A + B̄K̄ is
Hurwitz. The corresponding state-feedback has a form

u(t) =

n−1
j=0

K̄jxj(t), K̄j ∈ Rm×k.

Since the derivatives y(j)(t) = xj(t), j = 1, . . . , n−1 are not avail-
able, we approximate them by using the delayed measurements
x0(t − hj)(j = 1, . . . , n − 1), where

0 < h1 < · · · < hn−1. (2.4)

Differently from Fridman and Shaikhet (2016), we employ in
this paper the Taylor expansion with the integral form of the
remainder:

x0(t − hi) =

n−1
j=0

1
j!
(−hi)

jxj(t) + Wi(xnt), i = 1, . . . , n − 1,

(2.5)

where

Wi(xnt) =
(−1)n

(n − 1)!

 t

t−hi
(s − t + hi)

n−1xn(s)ds (2.6)

and where xn(s) = ẋn−1(s). Note that Wi(xnt) = O(hn
i ). In Fridman

and Shaikhet (2016) the delayed state was presented as x0(t −

h1) = x0(t)−hx1(t)+δ(t)with δ(t) = O(h2), whereas a particular
form of the remainder δ was not exploited. In such away it was not
clear how to extend the results of Fridman and Shaikhet (2016) to
n > 2.

Remark 2.1. For n = 1 representation (2.5) coincides with the
basic relation

x0(t − h1) = x0(t) −

 t

t−h1
ẋ0(s)ds
for delay-dependent stability conditions (see e.g. Fridman, 2014;
Kolmanovskii & Myshkis, 1999). In this sense the Lyapunov-based
analysis of Section 3 naturally extends simple delay-dependent
conditions from the 1st order to the nth order systems.

Denoting h0 = 0, we will find a delayed stabilizing static
output-feedback

u(t) =

n−1
i=0

Kix0(t − hi), Ki ∈ Rr×k. (2.7)

Substituting (2.7) into (2.3), we obtain the following closed-loop
system with delays

ẋ(t) = Ax(t) +

n−1
i=0

B̄Kix0(t − hi). (2.8)

From (2.5) we have

n−1
i=0

Kix0(t − hi) =

n−1
j=0

K̄jxj(t) +

n−1
i=1

KiWi(xnt), (2.9)

where

K̄0 =

n−1
i=0

Ki and

K̄j =
(−1)j

j!

n−1
i=1

hj
iKi, j = 1, . . . , n − 1.

(2.10)

From (2.10) for K = [K0 . . . Kn−1] we obtain

K̄ = KM,

M =


Ik 0 0 · · · 0

Ik −h1Ik
h2
1

2
Ik · · ·

(−h1)
n−1

(n − 1)!
Ik

. . . · · · · · · · · · · · ·

Ik −hn−1Ik
h2
n−1

2
Ik · · ·

(−hn−1)
n−1

(n − 1)!
Ik

 .
(2.11)

Since all the delays are different, the Vandermonde-type matrixM
is invertible. Moreover, the following holds:

Lemma 2.1. Let hi = ih(i = 0, . . . , n − 1) for some h > 0 and M
be given by (2.11). Then M−1

= O(h−n+1), i.e. the absolute values of
the entries of M−1 are bounded from above by Ch−n+1 with a positive
constant C = C(n).

Proof. The matrix M can be regarded as a matrix consisting
of k equal Vandermonde-type blocks Mb of size n (each block
is Vandermonde up to division of columns by corresponding
factorials). In particular, the determinant of each block is given by

detMb = C1


0≤i<j≤n−1

(hi − hj)

= C1(h0 − h1) · · · (h0 − hn−1)(h1 − h2) · · · (h1 − hn−1)

× · · · (hn−2 − hn−1) = C2hn(n−1)/2

with C1, C2 being functions of n.
Similarly to M , the inverse M−1 consists of k inverse matrices

(Mb)
−1. We can write (Mb)

−1
=

1
detMb

Adj(Mb), where the entries
of Adj(Mb) are (n−1)× (n−1)minors ofMb with some signs. Any
(n − 1) × (n − 1) minor ofMb, regarded as the sum of products of
elements taken one from each column, appears to be proportional
to hn(n−1)/2−s+1, where s is the number of the removed column of
Mb. Thus, the minimal order of the (n − 1) × (n − 1) minors of
Mb corresponds to the last removed column with s = n. Hence,
the minimal order of an entry of M−1 is (h

n(n−1)
2 −n+1)/h

n(n−1)
2 =

h−n+1. �
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Remark 2.2. As it is seen from the proof, the result of Lemma 2.1
remains true for more general choice of hi that are different and
such that hi = O(h) and hi − hj = O(h)(i ≠ j). The same is true
concerning items (ii) of theorems below.

Substitution of (2.9) into (2.8) yields

ẋ(t) = Dx(t) +

n−1
i=1

B̄KiWi(xnt),

D = A + B̄K̄ = A + B̄KM,

(2.12)

whereM is given by (2.11).
As in Fridman and Shaikhet (2016), we suggest two different

methods for stability analysis of the system (2.12). One method
is based on the direct Lyapunov–Krasovskii analysis of (2.12),
whereas the second one employs a neutral type model transfor-
mation.Wewill suppose that thematrixD is Hurwitz. Our stability
analysis will employ the following Jensen’s inequality:

Lemma 2.2 (Jensen’s Inequality Solomon & Fridman, 2013). Denote

G =

 b

a
f (s)x(s)ds,

where a ≤ b, f : [a, b] → [0.∞), x(s) ∈ Rn and the integration
concerned is well defined. Then for any n × n matrix R > 0 the
following inequality holds:

G′RG ≤

 b

a
f (θ)dθ

 b

a
f (s)x′(s)Rx(s)ds. (2.13)

3. Stability conditions: no model transformation

3.1. Constant delays

In this section we analyze stability of (2.8) by using its
presentation (2.12).

Theorem 3.1. (i) Given Ki ∈ Rm×k(i = 0, . . . , n− 1) and constant
known delays 0 = h0 < h1 < · · · < hn−1 such that the matrix
D = A + B̄KM with M defined by (2.11) and K = [K0...Kn−1] is
Hurwitz. Let there exist 0 < P ∈ Rnk×nk and 0 < Ri ∈ Rm×m, i =

1, . . . , n − 1 that satisfy the LMI

Ψ0 =


Φ0 X · · · X D′

[0k×(n−1)k Ik]′R̂
∗ −(n!)2R1 · · · 0 B′R̂
. . . · · · · · · · · · · · ·

∗ ∗ · · · −(n!)2Rn−1 B′R̂
∗ ∗ · · · ∗ −R̂


< 0, (3.1)

where

Φ0 = PD′
+ DP ∈ Rnk×nk, X = PB̄ ∈ Rnk×m,

R̂ =

n−1
i=1

h2n
i K ′

i RiKi ∈ Rk×k.
(3.2)

Then system (2.8) is asymptotically stable.
(ii) Given K̄ ∈ Rm×nk such that D = A + B̄K̄ is Hurwitz, and

hi = ih (i = 0, . . . , n − 1) with some h > 0. Let K = M−1K̄ ,
where M is given by (2.11). Then the LMI (3.1) is always feasible
for small enough h, i.e. (2.8) is stabilizable by the delayed feedback
(2.7) with small enough hi = ih.
Proof. (i) Differentiating V1(x(t)) = x′(t)Px(t)(P > 0) along
(2.12) we have

d
dt

V1(xt) = 2x′(t)P

Dx(t) +

n−1
i=1

B̄KiWi(xnt)

. (3.3)

To compensate in (3.3) the terms with Wi(xnt), consider the
functional

V2(xt) =

n−1
i=1

hn
i

 t

t−hi
(s − t + hi)

nx′

n(s)K
′

i RiKixn(s)ds,

where Ri > 0. Then

d
dt

V2(xt) =

n−1
i=1


h2n
i x′

n(t)K
′

i RiKixn(t)

−nhn
i

 t

t−hi
(s − t + hi)

n−1x′

n(s)K
′

i RiKixn(s)ds


. (3.4)

Via Jensen’s inequality (2.13) forWi(xnt) we find

W ′

i (xnt)K
′

i RiKiWi(xnt)

≤
hn
i

(n − 1)!n!

 t

t−hi
(s − t + hi)

n−1x′

n(s)K
′

i RiKixn(s)ds

or

− nhn
i

 t

t−hi
(s − t + hi)

n−1x′

n(s)K
′

i RiKixn(s)ds

≤ −(n!)2W ′

i (xnt)K
′

i RiKiWi(xnt). (3.5)

From (3.4), (3.5) by using notation (3.2) we obtain

d
dt

V2(xt) ≤ x′

n(t)R̂ixn(t)

−

n−1
i=1

(n!)2W ′

i (xnt)K
′

i RiKiWi(xnt). (3.6)

Consider the Lyapunov functional V (xt) = V1(x(t)) + V2(xt).
From (3.3) and (3.6) we obtain

d
dt

V (xt) ≤ x′(t)(PD′
+ DP)x(t) + x′

n(t)R̂xn(t)

+ 2x′(t)X
n−1
i=1

KiWi(xnt)

−

n−1
i=1

(n!)2W ′

i (xnt)R̄iWi(xnt)

= η′(t)Ξη(t) + x′

n(t)R̂xn(t). (3.7)

Here Ξ coincides with Ψ0, where the last column and row are
deleted, and

η(t) = col{x(t), K1W1(xnt), . . . , Kn−1Wn−1(xnt)}.

Note that (2.12) yields

xn(t) = [0k×(n−1)k Ik]Dx(t) +

n−1
i=1

BKiWi(xnt).

Substituting this into the last term of (3.7) and applying Schur
complementwe conclude that d

dt V (xt) ≤ −c|x(t)|2 for some c > 0
if Ψ0 < 0. So, (2.12) (and, thus, (2.8)) is asymptotically stable. The
proof of (i) is completed.
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(ii) By Lemma 2.1 we have M−1
= O(h−n+1) implying K =

O(h−n+1). Let P > 0 be a solution of the Lyapunov equation

D′P + PD = −Ink.

Choose Ri = h−1Im. Then R̂ = O(h−1). Applying Schur comple-
ments to Ψ0 < 0, we arrive at

D′P + PD + O(h) < 0,

that holds for small enough h. The proof of (ii) is completed. �

Remark 3.1. Theorem 3.1 improves the corresponding result in
Fridman and Shaikhet (2016) due to novel Lyapunov functional
introduced in the proof. For n = 2 the term V2 used in the proof of
Theorem 3.1 has a form

V2(xt) = h2
1

 t

t−h1
(s − t + h1)

2x′

2(s)K
′

1R1K1x2(s)ds,

whereas in Fridman and Shaikhet (2016) the following term was
employed

Ṽ2(xt) = h1

 t

t−h1
(s − t + h1)x′

2(s)K
′

1R1K1x2(s)ds.

The term Ṽ2 leads to LMI (3.1), where the (2,2)-diagonal term is
replaced by−0.25π2R1 which is greater than−4R1 in (3.1), i.e. the
LMI of Fridman and Shaikhet (2016) is more restrictive.

Remark 3.2. The representation (2.5) is used with the same n for
all hi. The latter allows to derive feasible LMIs. The feasibility claims
(for given K̄ and not for given K ) and their proofs in the present
paper are different from the ones in Fridman and Shaikhet (2016)
and are based on Lemma 2.1 and on the feasibility of the Lyapunov
equation for the closed-loop system under the full state-feedback.

Remark 3.3. The results of Theorem 3.1 can be extended to
performance analysis, e.g. to L2-gain analysis of the perturbed
system with a disturbance v ∈ L2[0, ∞) and with the noisy
measurements y = x0 + Ev, where E has appropriate dimensions.
In this case the delayed feedback (2.7) will contain the delayed
disturbance:

u(t) =

n−1
i=0

Ki[x0(t − hi) + Ev(t − hi)].

Let z be a controlled output. To derive LMI conditions for the
L2-gain analysis of the resulting closed-loop system, one can find
conditions for

V̇ + |z|2 −

n−1
i=0

γ 2
i |v(t − hi)|

2
≤ 0, t ≥ 0

with
n−1

i=0 γ 2
i ≤ γ 2, where v(t) = 0 for t < 0. This condition

guarantees that the L2-gain of the closed-loop system is less or
equal to γ since

n−1
i=0

γ 2
i


∞

0
|v(t − hi)|

2dt =

n−1
i=0

γ 2
i


∞

0
|v(t)|2dt

≤ γ 2


∞

0
|v(t)|2dt.

3.2. Extension to time-varying delays

For practical application of a delayed static output feedback,
consider its sampled-data implementation. Let 0 = t0 < t1 <
· · · < tk < · · · , k = 0, 1, . . . be sampling instants tk = kT , where
T > 0 is the sampling period, and let ηk ∈ [0, ηM ] be variable
and unknown input delay with a known upper bound ηM . Then a
sampled-data delayed controller can be presented as

u(t) =

n−1
i=0

Kix0(tk−ip − ηk), t ∈ [tk, tk+1] (3.8)

where p is some natural number (the sampling delay). Using
the time-delay approach to sampled-data control (Fridman, 2014;
Fridman, Seuret, & Richard, 2004; Liu & Fridman, 2012), the latter
controller may be further presented as the delayed one (2.7) with
time-varying delays:

hi(t) = t − tk−ip + ηk, i = 0, . . . , n − 1, t ∈ [tk, tk+1].

Clearly hi(t) ∈ [ipT , ipT + T + ηM ].
In the case of additional (unknown and bounded)measurement

delay, the closed-loop sampled-data system can be also presented
as a system with time-varying delays, where delays belong to
some intervals. Motivated by sampled-data implementation, in
this section we provide stability analysis of the closed-loop system
(2.8) with time-varying and unknown delays hi = hi(t), such that
hi(t) ∈ [him, hiM ], hiM ≥ him ≥ 0, i = 0, . . . , n − 1, h0m = 0. We
have

x0(t − hi(t)) = x0(t − him) + δi(t),

where

δi(t) =

 t−hi(t)

t−him
x1(s)ds, i = 0, . . . , n − 1. (3.9)

We employ (2.5). Then from (2.9), (2.10) with hi = him we
obtain
n−1
i=0

Kix0(t − hi(t)) =

n−1
j=0

K̄jxj(t) +

n−1
i=1

KiWi(xnt) +

n−1
i=0

Kiδi(t),

(3.10)

where Wi and K̄j are given by (2.6) and (2.10) respectively with hi
replaced by him. So, instead of (2.12) for constant delays, we obtain
the following presentation of (2.8) with time-varying delays:

ẋ(t) = Dx(t) +

n−1
i=1

B̄KiWi(xnt) +

n−1
i=0

B̄Kiδi(t). (3.11)

Here D = A + B̄KM|hi=him with M given by (2.11). For the function
V1(x(t)) = x′(t)Px(t) similarly to (3.3) we have

d
dt

V1(xt) = 2x′(t)P

Dx(t) +

n−1
i=1

B̄KiWi(xnt) +

n−1
i=0

B̄Kiδi(t)

.

(3.12)

To compensate in (3.12) the terms withWi(xnt) and δi(t), consider
the simplest functional for this case

V2(xt) =

n−1
i=1

hn
im

 t

t−him
(s − t + him)nx′

n(s)K
′

i RiKixn(s)ds

+

n−1
i=0

(hiM − him)

 t−him

t−hiM
(s − t + hiM)x′

1(s)Ūix1(s)ds

+

n−1
i=1

(hiM − him)2
 t

t−him
x′

1(s)Ūix1(s)ds,

Ūi = K ′

iUiKi, Ri,Ui > 0.

Note that the results for time-varying delays via the simplest
Lyapunov functionals (with just Ūi ’’double integral terms’’)may be
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restrictive, but they may be improved by using advanced methods
for time-varying delays that lead to larger LMIs (see e.g. Fridman,
2014; Park, Ko, & Jeong, 2011). Differentiating V2(xt) we have

d
dt

V2(xt) =

n−1
i=1

hn
im


hn
imx

′

n(t)K
′

i RiKixn(t)

− n
 t

t−him
(s − t + him)n−1x′

n(s)K
′

i RiKixn(s)ds


−

n−1
i=0

(hiM − him)

 t−him

t−hiM
x′

1(s)Ūix1(s)ds

+

n−1
i=0

(hiM − him)2x′

1(t)Ūix1(t).

Using Jensen’s inequality, we obtain

− (hiM − him)

 t−him

t−hiM
x′

2(s)Ūix2(s)ds ≤ −δ′

i(t)Ūiδi(t), (3.13)

and (3.5) with hi replaced by him. Then for V̇2(xt) instead of (3.6)
we have

d
dt

V2(xt) ≤ x′

n(t)R̂xn(t) +

n−1
i=0

(hiM − him)2x′

1(t)Ūix1(t)

−(n!)2
n−1
i=0

W ′

i (xnt)K
′

i RiKiWi(xnt) −

n−1
i=0

δ′

i(t)Ūiδi(t), (3.14)

where R̂ =
n−1

i=1 h2n
imK

′

i RiKi. From (3.12), (3.14) for the functional
V (xt) = V1(xt) + V2(xt) we find

d
dt

V (xt) ≤ 2x′(t)PDx(t) + x′

n(t)R̂xn(t)

+ 2x′(t)PB̄
n−1

i=1

KiWi(xnt) +

n−1
i=0

Kiδi(t)


+

n−1
i=0

(hiM − him)2x′

1(t)Ūix1(t)

− (n!)2
n−1
i=1

W ′

i (xnt)K
′

i RiKiWi(xnt)

−

n−1
i=0

δ′

i(t)Ūiδi(t). (3.15)

Comparing (3.15) with (3.7) we arrive at the following generaliza-
tion of Theorem 3.1:

Theorem 3.2. (i) Given Ki ∈ Rm×k, hiM ≥ him ≥ 0 (i = 0, . . . , n−

1) and h0m = 0, assume that the matrix D = A + B̄KM|hi=him
with M given by (2.11) and K = [K0...Kn−1] is Hurwitz. If there
exist positive definite matrices P ∈ Rnk×nk, Ri ∈ Rm×m(i =

1, . . . , n − 1), and Uj ∈ Rm×m(j = 0, . . . , n − 1) that satisfy
the LMI which is given in Box I where

Φ1 = PD + D′P

+diag

0k×k,

n−1
i=0

(hiM − him)2K ′

iUiKi, 0k×k, . . . , 0k×k


,

X = PB̄, R̂ =

n−1
i=1

h2n
imK

′

i RiKi,

then system (2.8) with time-varying delays is asymptotically
stable.
(ii) Given K̄ ∈ Rm×nk such that D = A + B̄K̄ is Hurwitz, and him =

ih (i = 0, . . . , n− 1) with some h > 0, let K = M−1K̄ , where M
is given by (2.11)with hi = him. Assume that hiM − him = O(hn).
Then the LMI Ψ1 < 0 is always feasible for small enough h.

Proof. Item (i) was already proved.
(ii) By Lemma 2.1M−1

= O(h−n+1) implying K = O(h−n+1). Let
P > 0 be a solution of the Lyapunov equation D′P + PD = −Ink.
Choose Ri = Ui = h−1Im. Then R̂ = O(h−1). Applying Schur
complements to Ψ1 < 0, we arrive at D′P + PD + O(h) < 0 that
holds for small enough h. �

4. Model transformation-based approach

In this section the system (2.8) will be presented in the form of
neutral type system. This approach will be applied also to systems
under stochastic perturbations.

4.1. Constant delays

Let us show that the integral Wi(xnt) defined in (2.6) can be
represented as derivative in time of the functional

Gi(xn−1,t) =
(−1)n

(n − 1)!

 t

t−hi
(s − t + hi)

n−1xn−1(s)ds,

i = 1, . . . , n − 1. (4.1)

Indeed, differentiating Gi(xn−1,t) and integrating by parts, via
ẋn−1 = xn and (2.6) we have

d
dt

Gi(xn−1,t)

=
(−1)n

(n − 1)!


hn−1
i xn−1(t)

− (n − 1)
 t

t−hi
(s − t + hi)

n−2xn−1(s)ds


=
(−1)n

(n − 1)!


hn−1
i xn−1(t) −

 t

t−hi
xn−1(s)d(s − t + hi)

n−1


=
(−1)n

(n − 1)!


hn−1
i xn−1(t) −


hn−1
i xn−1(t)

−

 t

t−hi
(s − t + hi)

n−1dxn−1(s)


= Wi(xnt). (4.2)

Via (4.2) instead of (2.5) we obtain the representation

x0(t − hi) =

n−1
j=0

(−hi)
j

j!
xj(t) +

d
dt

Gi(xn−1,t) (4.3)

that was used in Shaikhet (2013) for the stability analysis of
systems of the type of (2.8).

Thus, the system (2.12) can be represented in the form

ż(t) = Dx(t), (4.4)

where

z(t) = x(t) −

n−1
i=1

B̄KiGi(xn−1,t), (4.5)

and D is defined in (2.12).
The stability of the transformed neutral type systems, guar-

antees the stability of the original one (2.8). In order to use the
Lyapunov–Krasovskii theorem for the stability of the neutral type
systems (see e.g. Theorem 8.1 on p. 293 of Hale & Verduyn Lunel,
1993), we first derive conditions for the exponential stability of the
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Ψ1 =



Φ1 X · · · X X · · · X D′
[0 Ik]′R̂

∗ −(n!)2R1 · · · 0 0 · · · 0 B′R̂
. . . · · · · · · · · · · · · · · · · · · · · ·

∗ ∗ · · · 0 0 · · · 0 B′R̂
∗ ∗ · · · −(n!)2Rn−1 0 · · · 0 B′R̂
∗ ∗ · · · ∗ −U0 · · · 0 B′R̂
. . . · · · · · · · · · · · · · · · · · · · · ·

∗ ∗ · · · ∗ ∗ · · · −Un−1 B′R̂
∗ ∗ · · · ∗ ∗ · · · ∗ −R̂


< 0,

Box I.
corresponding integral equation z(t) = 0. It is seen from (4.5) that
the stability of z(t) = 0 is equivalent to the stability of

xn−1(t) =

n−1
i=1

BKiGi(xn−1,t). (4.6)

Similarly to Fridman and Shaikhet (2016) the following statement
can be proved:

Lemma 4.1. Let there exist positive definite matrices Si ∈ Rk×k such
that the following LMI holds

K̂ ′B′


n−1
i=1

h2n
i Si


BK̂ − S̄ < 0, (4.7)

where K̂ = [K1 . . . Kn−1] ∈ Rk×(n−1)k and

S̄ = diag{(n!)2S1, . . . , (n!)2Sn−1} ∈ R(n−1)k×(n−1)k.

Then the integral equation (4.6) is exponentially stable.

Remark 4.1. It can be seen that a simple sufficient condition for
the feasibility of (4.7) (i.e. for the exponential stability of (4.6)) is
given by

n−1
i=1 hn

i |BKi| < n!, that was used for stability analysis
of neutral type systems in Kolmanovskii and Myshkis (1999) and
Shaikhet (2013).

Theorem 4.1. (i) Given Ki ∈ Rm×k(i = 0, . . . , n− 1) and constant
known delays 0 = h0 < h1 < · · · < hn−1 such that the matrix
D = A + B̄KM with M defined by (2.11) and K = [K0...Kn−1]

is Hurwitz. Let there exist positive definite matrices P ∈ Rnk×nk

and Si ∈ Rk×k, Ri ∈ Rm×m (i = 1, . . . , n − 1) that satisfy LMIs
(4.7) and

Ψ2 =


Φ2 Z · · · Z
∗ −(n!)2R1 · · · 0
. . . · · · · · · · · ·

∗ ∗ · · · 0
∗ ∗ · · · −(n!)2Rn−1

 < 0, (4.8)

where Z = D′PB̄ ∈ Rnk×m and

Φ2 = D′P + PD + diag

0k×k, . . . , 0k×k,

n−1
i=1

h2n
i K ′

i RiKi


.

Then the system (2.8) is asymptotically stable.
(ii) Given K̄ ∈ Rm×nk such that D = A + B̄K̄ is Hurwitz, and

hi = ih (i = 0, . . . , n − 1) with some h > 0, let K = M−1K̄ ,
where M is given by (2.11). Then the LMI Ψ2 < 0 is always
feasible for small enough h.

Proof. (i) By Lemma 4.1, LMI (4.7) guarantees the exponential
stability of the integral equation (4.6). Differentiating

V1(xt) = z ′(t)Pz(t), P > 0, P ∈ Rnk×nk (4.9)
along (4.4) and (4.5) we have

d
dt

V1(xt) = 2z ′(t)Pż(t)

= 2

x(t) −

n−1
i=1

B̄KiGi(xn−1,t)
′

PDx(t)

= 2x′(t)PDx(t) − 2
n−1
i=1

G′

i(xn−1,t)K ′

i Z
′x(t). (4.10)

In order to compensate in (4.10) the terms Gi(xn−1,t), consider the
additional functional

V2(xt) =

n−1
i=1

hn
i

 t

t−hi
(s − t + hi)

nx′

n−1(s)R̂ixn−1(s)ds,

R̂i = K ′

i RiKi, Ri > 0.

Differentiating V2(xt) and applying Jensen’s inequality, similarly to
(3.5) and (3.6), we obtain

d
dt

V2(xt) ≤

n−1
i=1


h2n
i x′

n−1(t)R̄ixn−1(t)

− (n!)2G′

i(xn−1,t)R̄iGi(xn−1,t)

. (4.11)

From (4.10), (4.11) for the Lyapunov functional V (xt) = V1(xt) +

V2(xt) we arrive at

d
dt

V (xt) ≤ η′

2(t)Ψ2η2(t),

η2(t) = col{x(t), −K1G1(xn−1,t), . . . ,−Kn−1Gn−1(xn−1,t)}.

(4.12)

So, under (4.8), the system (4.4), (4.5) (and, thus, (2.8)) is
asymptotically stable (Hale & Verduyn Lunel, 1993).

The proof of (ii) is similar to (ii) of Theorem 3.1. �

4.2. Time-varying delays and stochastic perturbations

In this section we consider the system (2.8) with time-varying
and unknown delays hi = hi(t), such that hi(t) ∈ [him, hiM ], hiM ≥

him ≥ 0, i = 0, . . . , n− 1. Let δi(t) be given by (3.9), and Gi(xn−1,t)
be given by (4.1)with him instead of hi. Similarly to (3.10)we obtain

n−1
i=0

Kix0(t − hi(t)) =

n−1
i=1

Ki
d
dt

Gi(xn−1,t) +

n−1
i=0

Kiδi(t)

+

n−1
j=0

(−1)j

j!

n−1
i=0

hj
imKixj(t). (4.13)
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Then (2.8) takes the form

ż(t) = Dx(t) +

n−1
i=0

B̄Kiδi(t), (4.14)

where D = A + B̄KM|hi=him and z(t) is defined in (4.5).
LMI (4.7) guarantees the exponential stability of integral

equation (4.6). Differentiating (4.9) along (4.14), (4.5) we have

d
dt

V1(xt) = 2

x(t) −

n−1
i=1

B̄KiGi(xn−1,t)
′

P

×


Dx(t) +

n−1
i=0

B̄Kiδi(t)


= 2x′(t)PDx(t) − 2
n−1
i=1

G′

i(xn−1,t)K ′

i Z
′x(t)

+ 2x′(t)X
n−1
i=0

Kiδi(t)

− 2
n−1
j=1

G′

j(xn−1,t)K ′

j Y
n−1
i=0

Kiδi(t). (4.15)

In order to compensate in (4.15) the terms Gj(xn−1,t) and δi(t)
consider the additional functional

V2(xt) =

n−1
i=1

hn
im

 t

t−him
(s − t + him)n

× x′

n−1(s)R̄ixn−1(s)ds

+

n−1
i=0

(hiM − him)

 t−him

t−hiM
(s − t + hiM)

× x′

1(s)Ūix1(s)ds

+

n−1
i=1

(hiM − him)2
 t

t−him
x′

1(s)Ūix1(s)ds,

R̄i = K ′

i RiKi, Ūi = K ′

iUiKi, Ri,Ui > 0. (4.16)

DifferentiatingV2(xt) and applying Jensen’s inequality (cf. (3.5) and
(3.13)), similarly to (3.14), we obtain

d
dt

V2(xt) ≤

n−1
i=1

h2n
imx

′

n−1(t)R̄ixn−1(t)

+

n−1
i=0

(hiM − him)2x′

1(t)Ūix1(t)

− (n!)2
n−1
i=1

G′

i(xn−1,t)R̄iGi(xn−1,t)

−

n−1
i=0

δ′

i(t)Ūiδi(t). (4.17)

From (4.15), (4.17) for the Lyapunov functional V (xt) = V1(xt) +

V2(xt) we find
d
dt

V (xt) ≤ 2x′(t)PDx(t)

−2
n−1
i=1

G′

i(xn−1,t)K ′

i Z
′x(t) + 2x′(t)X

n−1
i=0

Kiδi(t)

−2
n−1
j=1

G′

j(xn−1,t)K ′

j Y
n−1
i=0

Kiδi(t)
+

n−1
i=1

h2n
imx

′

n−1(t)R̄ixn−1(t)

+

n−1
i=0

(hiM − him)2x′

1(t)Ūix1(t) −

n−1
i=0

δ′

i(t)Ūiδi(t)

−(n!)2
n−1
i=1

G′

i(xn−1,t)R̄iGi(xn−1,t) ≤ η′

3(t)Ψ3η3(t), (4.18)

where

η3(t) = col{x(t), −K1G1(xn−1,t), . . . ,

− Kn−1Gn−1(xn−1,t), K0δ0, . . . , Kn−1δn−1}

and

Ψ3 =



Φ3 Z · · · Z X · · · X
∗ −(n!)2R1 · · · 0 Y · · · Y
. . . · · · · · · · · · · · · · · · · · ·

∗ ∗ · · · 0 Y · · · Y
∗ ∗ · · · −(n!)2Rn−1 Y · · · Y
∗ ∗ · · · ∗ −U0 · · · 0
. . . · · · · · · · · · · · · · · · · · ·

∗ ∗ · · · ∗ ∗ · · · −Un−1


,

Φ3 = PD + D′P + diag

0k×k,

n−1
i=0

(hiM − him)2K ′

iUiKi,

0k×k, . . . , 0k×k,

n−1
i=1

h2n
imK

′

i RiKi


,

X = PB̄, Y = B̄′X, Z = D′X . (4.19)

Suppose now that the coefficients A0, . . . , An−1 in (2.1) are un-
der the influence of stochastic perturbations of the type of white
noise, i.e., Ai → Ai + σiẇi(t), i = 0, 1, . . . , n − 1, where σi ∈

Rk×k×qi are constant matrices, wi(t) ∈ Rqi are mutually indepen-
dentWiener processeswith independent components (Gikhman&
Skorokhod, 1972; Shaikhet, 2013). In this case instead of (4.14) we
obtain the system of Ito’s stochastic differential equations

dz(t) =


Dx(t) +

n−1
i=0

B̄Kiδi(t)

dt + C(x(t))dw(t), (4.20)

where z(t) is defined in (4.5) and

C(x(t)) = col{0, σ (x(t))} ∈ Rnk×q, q =

n−1
i=0

qi,

σ (x(t)) =

(σ0x0(t)) . . . (σn−1xn−1(t))


∈ Rk×q,

w(t) = col{w0(t), . . . , wn−1(t)} ∈ Rq.

(4.21)

Denote by L the generator of the stochastic differential equation
(4.20) (see Gikhman & Skorokhod, 1972; Shaikhet, 2013). Then for
Lyapunov functional V (xt) = z ′(t)Pz(t)+V2(xt), where V2 is given
by (4.16), similarly to (4.18) we obtain

LV (xt) ≤ η′

3(t)Ψ3η3(t) + Tr[C ′(x(t))PC(x(t))]

= η′

3(t)Ψ3η3(t) +

n−1
i=0

x′

i(t)Tixi(t),

where

Ti = Tr[σ ′

i [0 . . . 0 Ik]P[0 . . . 0 Ik]′σi] ∈ Rk×k. (4.22)

Thus, we arrive at the following result:

Theorem 4.2. (i) Given Ki ∈ Rm×k, hiM ≥ him ≥ 0 (i = 0, . . . ,
n− 1) and h0m = 0, assume that the matrix D = A+ B̄KM|hi=him
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with M given by (2.11) and K = [K0...Kn−1] is Hurwitz. If there
exist positive definite matrices P ∈ Rnk×nk, Si ∈ Rk×k and
Ri,Uj ∈ Rm×m (i = 1, . . . , n − 1, j = 0, . . . , n − 1) that satisfy
LMIs (4.7) and

Ψ3 + diag{T0, . . . , Tn−1, 02nm×2nm} < 0, (4.23)

whereΨ3 is defined by (4.19)with D = D|hi=him and Ti are defined
by (4.22), then the system (4.20), (4.21), (4.5) is asymptotically
mean square stable.

(ii) Given K̄ ∈ Rm×nk such that D = A + B̄K̄ is Hurwitz, him =

ih, hiM − him = O(hn) and σi = O(
√
h) (i = 0, . . . , n− 1) with

some h > 0, let K = M−1K̄ , whereM is given by (2.11)with hi =

him. Then the LMI (4.23) is always feasible for small enough h.

5. Examples

5.1. Scalar system of the third order

In this section we consider (2.1) with n = 3, k = m = 1 and
B = 1. The matrix D here has a form

D =

 0 1 0
0 0 1

−Q0 −Q1 −Q2


(5.1)

with

Q0 = −A0 − (K0 + K1 + K2),

Q1 = −A1 + h1K1 + h2K2,

Q2 = −A2 −
1
2
(h2

1K1 + h2
2K2).

(5.2)

The matrix (5.1) is Hurwitz if and only if (see e.g. Shaikhet, 2013)

Qi > 0, i = 0, 1, 2, Q2Q1 > Q0. (5.3)

In the examples below (for n = 3), stabilizing gains Ki and h1, h2
of the delayed feedback (2.7) are obtained via conditions (5.3) that
guarantee D to be a Hurwitz matrix.

Example 5.1. Consider the chain of three integrators, where

A0 = A1 = A2 = 0. (5.4)

Choose

h0 = 0, h1 = h, h2 = 2h,
K0 = −1.1002, K1 = 2.1, K2 = −1

(5.5)

that lead toHurwitzmatrixD. By Theorem3.1, the resulting closed-
loop system (2.8) is asymptotically stable for h ∈ [0.127, 0.843].
Conditions of Theorem 4.1 lead to a slightly smaller stability
interval h ∈ [0.130, 0.840]. Simulations of solutions of the system
with the initial function y(s) = −0.8 cos(s)(s ∈ [−2h, 0]) are
shown in Fig. 1 for different delays: h = 0.15, h = 0.40, h = 0.85
and h = 1.209. One can see that for h = 1.209 the system is
unstable, meaning that the LMI conditions are efficient (not too
conservative).

Consider now the sampled-data implementation (3.8) of the
delayed controller with the sampling period T , sampling delay p
and unknown input delay bounded by ηM . We apply Theorems 3.2
and 4.2 with

him = ipT , hiM = ipT + T + ηM , i = 0, 1, 2. (5.6)

Theorem 4.2 is applied either to stochastic case in the presence of
noise A1 = σ1ẇ(t) with σ1 = 0.3 or to deterministic case, where
σ1 = 0, whereas Theorem 3.2 is applicable only to deterministic
case. As it is seen from Table 1, Theorem 4.2 here leads to more
efficient results (larger T and smaller p for small ηM , or larger ηM
for the same T and p).
Fig. 1. Solutions of (2.8), (5.4), (5.5) for different delays: h = 0.15 (blue), h = 0.40
(red), h = 0.85 (black), h = 1.209 (green). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Example 5.1: stabilizing T and p for digital implementation.

Theorems T p ηM σ1

Theorem 3.2 0.0132 50 0.00041 0
Theorem 4.2 0.0195 43 0.00027 0
Theorem 4.2 0.0195 43 0.000002 0.03

Theorem 3.2 0.0028 293 0.0025 0
Theorem 4.2 0.0028 293 0.016 0
Theorem 4.2 0.0028 293 0.015 0.0798

Table 2
Example 5.2: stabilizing T and p for digital implementation.

Theorems T p ηM σ1

Theorem 3.2 0.0098 32 0.00000001 0
Theorem 4.2 0.0097 32 0.0000259 0
Theorem 4.2 0.0097 32 0.0000250 0.0028

Simulations of the solutions of the deterministic sampled-data
system confirm the theoretical results. Moreover, choosing ηM =

0.00027 and p = 43 we find that the system preserves asymptotic
stability for larger than the theoretically predicted T = 0.0195 (till
T ≈ 0.027). Note also that for large T = 0.027 and ηM = 0.00027
the system preserves stability for all p = 5, 6, . . . , 43.

Remark 5.1. In Karafyllis (2008), by using another design for
the chain of three integrators, a theoretical bound on h of the
order of 10−3 was obtained leading to high controller gains.
Simulations in Karafyllis (2008) showed that convergence was
preserved for much larger delays with h ≤ 0.21 illustrating
essential conservatism of the theoretical results.

Example 5.2. Consider

A0 = A2 = 0, A1 = −1, (5.7)

and (5.5). Here Theorems 3.1 and 4.1 give stability intervals h ∈

[0.005, 0.585] and h ∈ [0.015, 0.544] respectively, i.e. Theo-
rem 3.1 is less conservative. For sampled-data case, the results
that follow from Theorems 3.2 and 4.2 are given in Table 2. Here
Theorems 3.2 and 4.2 lead to close results. Simulations of the so-
lutions of the deterministic sampled-data system show that for
ηk ≡ ηM = 0.000025 and p = 32 the system is asymptotically
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stable for T = 0.0097 (as theoretically predicted), and it preserves
stability for larger T (till T ≈ 0.03).

5.2. Scalar system of the fourth order

In the present section we consider (2.1) with n = 4, k = m = 1
and B = 1. For systems of the order n ≥ 4 it is difficult to find
directly K that leads to Hurwitz D. So, here wewill first find K̄ such
that D = A + BK̄ is Hurwitz (e.g. by using pole placement), and
then find K = K̄M−1.

Example 5.3. Consider the chain of four integrators, i.e. (2.1) with
Ai = 0 (i = 0, . . . , 3). Choose

K̄ = [−0.0208 − 0.3200 − 1.1800 − 0.7000] (5.8)

that leads to the eigenvalues [−0.2 + i, −0.2 − i, −0.1, −0.2] of
D = A + BK̄ . Let hi = ih (i = 0, 1, 2, 3). The gain K is found as
K = K̄M−1. Here LMIs of Theorems 3.1 and 4.1 are feasible for the
same values of h: h ∈ [0.000001, 0.0873]. Thus, for h = 0.0873
we obtain

K = [−1368.5 3941.4 − 3781.1 1208.1].

Substituting the latter gain in LMIs of Theorems 3.1 and 4.1,
where hi = ih(i = 1, 2, 3) and D = A + B̄KM , we find almost
the same asymptotic stability intervals h ∈ [0.0871, 0.0952] and
h ∈ [0.0873, 0.0952] respectively. Simulations of the solutions
show that the system is asymptotically stable for a larger interval
h ∈ [0.074, 0.17]. So, LMIs are efficient also in this example.

In the presence of noise A0 = 0.05ẇ(t), Theorem 4.2
guarantees asymptotic mean square stability for the interval h ∈

[0.0876, 0.0950].

6. Conclusion

Static output-feedback controllers with stabilizing artificial
delays are attractive due to their simplicity in implementation.
However, simple and efficient conditions for the design and
robustness analysis of such controllers were missing. The present
paper fills this gap introducing simple LMIs for robust stability
analysis of the closed-loop systems with multiple delays and
justifying that these LMIs are always feasible for small enough
delays. Further improvements and extensions to network-based
stabilization by using artificial delays may be topics for future
research. Some preliminary results on network-based stabilization
of systems with relative degree two by using artificial delays are
presented in Selivanov and Fridman (2017).
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